

Étude d'un dipôle tourbillonnaire AVANT ET APRÈS UNE COLLISION

A. Guardia¹, C. Brouzet², S. Thalabard² 1. Master OAM, Université Côte d'Azur, 2. Université Côte d'Azur, CNRS, INPHYNI arnaud.guardia@etu.unice.fr

Résumé

Dans le but d'étudier les interactions entre tourbillons et parois en deux dimensions, j'ai simulé des dipôles tourbillonnaires à l'aide d'un programme [1] résolvant les équations de Navier Stokes. Sans paroi, différentes conditions initiales ont été simulées et leur évolution temporelle a été caractérisée. Enfin, l'effet de la paroi sur les dipôles a été étudiée lors d'une collision.

Méthode de la pénalisation du volume

Conditions initiales

Équation de Navier-Stokes sur la vitesse **u** : $\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u} - \eta \chi \mathbf{u}$ (1) Équation sur la vorticité ω : $\partial_t \omega + (\mathbf{u} \cdot \nabla) \omega = \nu \nabla^2 \omega - \eta \nabla \wedge \chi \boldsymbol{u} \qquad (2)$ Fonction de courant ψ : $\omega = -\nabla^2 \psi$ (3)

• p : la pression ; • v : viscosité ;

- χ : masque représentant l'obstacle ;
- η : paramètre de porosité [2].

Auto-similarité des profils de vorticité remis à l'échelle

Le vortex sombrero génère un dipôle secondaire. Sans paroi, le dipôle secondaire part dans la direction opposé et rencontre le dipôle principal du fait de la périodicité.

de vorticité

Vorticité des deux types de dipôles simulés :

Relation fonctionnelle entre la vorticité et la fonction de courant

En se plaçant dans le référentiel du barycentre de vorticité on met en évidence une relation fonctionnelle entre ψ et ω permettant de caractériser les différents dipôles.

Dipole de Lamb-Chaplygin

Lamb-Chaplygin : D Lamb-Chaplygin : profil croissant

Dipôle Sombrero : Dipôle Sombrero : profil existence de maxima et de de vorticité aux minima de minima pour D

x/DDipôle sombrero : Auto-similarité du profil remis à l'échelle aux minima de *D*

0.0

-1.0

 $-\pi$

-2

de vorticité remis à l'échelle auto-similaire pour tout *t*. t = 1.2t = 4.3

t = 8.0

Dipôle sombrero :

0.5

0.0 -

-0.5

-1.0

-1.5

$$\begin{split} \omega &= a\psi + b\psi^3\\ a &= 0.71\\ b &= 0.30 \end{split}$$

-1.5

Création d'enstrophie par l'ajout d'une paroi

Perspectives

- Caractérisation des dipôles après la collision
- Comparaison avec les données expérimentales

t=0,2 t=0t=0,5 t=0,7 La collision avec la paroi conduit clairement à une augmentation de l'enstrophie et une perte d'énergie. Comparaison du cas avec et sans paroi ci-dessous.

References

[1] Keaton J. Burns et al. "Dedalus: A flexible framework for numerical simulations with spectral methods". In: Physical Review Research 2.2, 023068 (Apr. 2020), p. 023068. DOI: 10.1103/ PhysRevResearch.2.023068. arXiv: 1905.10388 [astro-ph.IM].

[2] R. Nguyen van yen, M. Farge, and K. Schneider. "Energy Dissipating Structures Produced by Walls in Two-Dimensional Flows at Vanishing Viscosity". In: Phys. Rev. Lett. 106 (2011).

